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Abstract—A doubly asymptotic approximation (DAA) is an approximate temporal impedance
relation at the boundary of a continuous medium ; it approaches exactness at both early and late
times. effecting a smooth transition between. Here. first- and second-order DAAs are derived for a
uniform, isotropic, elastic medium of either infinite or semi-infinite extent. The derivations proceed
from pertinent singly asvmptotic approximations and employ the method of operator matching
previously used for acoustic domains. A simple problem with spherical symmetry is considered that
illustrates the characteristics of the singly and doubly asymptotic approximations. - 1997 Elsevier
Science Ltd. All rights reserved.

INTRODUCTION

Materials characterization, flaw detection, medical diagnosis, earthquake-resistant con-
struction, oil exploration and defense technology are some of the areas in which dynamic
boundary-element analysis has been productively used. Considerable progress has been
made in time-harmonic applications, because the pertinent integral operators admit sat-
isfactorily accurate and efficient computation. However, computational impracticality has
hindered the application of transient boundary-element analysis, which has motivated the
development of approximate approaches.

The focus here is on a body embedded in an unbounded, uniform. isotropic, linear-
elastic medium, either infinite or semi-infinite. The body itself, and/or some medium in the
immediate vicinity of the body. may exhibit nonlinear behavior; in the latter case, the
boundary on which the integral operators act encloses both the body and the nonlinearly
behaving medium.

In a radiation problem. the total elastodynamic field outside the integral-operator
boundary is the radiated field. In a scattering problem, the total field is separated into the
(known) incident field and the (unknown) scattered field. The incident field is that which
would exist if the region inside the boundary were replaced by linear-elastic medium. The
scattered field, then. is merely the difference, at any point and any time, between the total
field and the incident field. i.e.. it is the field caused by the presence of the scatterer.

Analysis of a transient radiated or scattered field on an integral-operator boundary is
greatly facilitated by the formulation of a remporal impedance relation (TIR) that provides
the body’s time-domain view of the surrounding medium (Geers and Zhang, 1994). When
the TIR is combined with the equations of motion for the body, the interface compatibility
conditions at the boundary, and the pertinent initial and forcing conditions. a complete
mathematical formulation is obtained that lends itself to numerical solution.

As indicated above, exact TIRs are complicated and costly to employ in computations,
as they are nonlocal in both space and time. i.e., they require full computational matrices
and long-memory response data. Hence, accurate approximate TIR s are needed for efficient
computation. This paper is about approximate TIRs that approach exactness at both early
time and late time, and effect a smooth transition between ; hence, they are called doubly
asymptotic. Doubly asymptotic TIRs are much more robust than singly asymptotic TIRs,
which approach exactness in either the early-time (high-frequency, short-wavelength) or
late-time (low-frequency, long-wavelength) limit, but not both (Mathews and Geers, 1987).
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THREE-DIMENSIONAL TRANSIENT ELASTODYNAMICS

In the absence of body forces, the radiated/scattered displacement field in an infinite,
isotropic, elastic medium may be expressed in terms of a scalar potential ¢(X,7) and a
vector potential (X, 7) as the Helmholtz decomposition (Eringen and Suhubi, 1975)

(X, 1) = VO(X, )+ Vxy(X.1). V-yE, 1 =0. (1)

With this decomposition, the displacement equation of elastodynamics separates into the
uncoupled wave equations

HVIOE ) =GR 0. VPR = PR, )
where an overdot denotes a time derivative, and ¢, and cg are the dilatational and shear

phase velocities, respectively, given in terms of the Lamé parameters 4, y and the mass
density p by

ch =A+2u)/p. 5 = wp. 3)

The associated stress tensor may be expressed
(X, 1) = iV GE DT+ 2uVVP(Z. 1)+ u VIV x (X )]+ [V x §(X. 0]V], (4)

where 7 is the identity tensor.
An exact formula for both ¢(X. 1) and ¢(X. 1), where X is any point on the operator
boundary, is Kirchoff's retarded-potential formula (Eringen and Suhubi, 1975)

A

¢R

2np(X, 1) = [

JS

o 1 ) X |
{Rl%(X’, tr)+R"- |:(P(X’.tk)+?<b(X’,1R)j|}dS‘ (5)

cn’

in which ¢ is either ¢ or 171 and ¢ is either ¢, or ¢, R = |[X—X’|. #’ is the boundary normal
at X’ (defined positive going into the elastic domain). and the retarded time 7z = 1 — R/c;
2()/én = e, V(). where &,(X) is the unit normal on the boundary. An exact TIR that
directly links the boundary displacement vector ii(X. ) and the boundary traction vector
€(X. 1) is Love’s integral identity, which may be written in Laplace-transform space for a
smooth surface as (Cruse and Rizzo, 1968)

| - o, S - S e
il_i(x. S)+J aX . ) TX, X'.5)dS = J‘ t(X.HUX, X, s)ds’, (6)
s k

S

where T(X.X".5) and U(X.X".s) are Laplace-transformed dynamic Green's tensors. As
mentioned above, utilization of (5) or (6) in engineering practice is currently impractical.

EARLY-TIME APPROXIMATIONS ETA, AND ETA.

An analysis of (5) at early time (Felippa, 1980a) for a radiated or scattered field on a
smooth boundary yields the curved-wave approximation

dX. 1)+ ex(X)oX. 1) ~ 7('%(;{, 0. 7

where «(X) is the mean curvature of the boundary (defined positive over a convex region)
and » is the boundary normal at X. Now (7) is also produced by ray theory (Nicolas-
Vullierme, 1991) through the Laplace-transform representation (Keller, 1964)
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(8)

where, as shown in Fig. 1. &, ¢, and 5 define a local curvilinear coordinate system at X, and
R:(X) and R.(X) are the principal radii of curvature (defined positive over a convex region).
From (8), we find

o o ¢ s
PRs) = Lim (. ms) ~ — <
cn :

n—0 Ey’

: )w(i,w, )

which, upon inversion, agrees with (7).

Now a requirement for the applicability of elastodynamic ray theory is that the
derivatives of ¢ and ¥ in the normal direction greatly overshadow their counterparts in the
tangential directions, e.g.. [8¢/3&| « |é¢p/én| and |8¢/él| « |é¢pjcn|. Thus, for Fig. 1 we
write ¢ = R.0; and { = R.0. to obtain the metric coefficients 4: = R., h. = R- and h, =1
(Moon and Spencer, 1981), and thereby obtain the ray-theory boundary approximations

o] N2 ~
Vore L vosiol?
[&7] cn- ChH
Vxigx—& (“‘D +R“z//;>+é’ (‘;'/’% +R:Y )
CH «n
R p R.—R = 0 R —R
V'z/t:e< Ve oW fRTR ) e (T Y +%'w)
on’ R:R ons én R*R

Nonzero component of VV¢ :  (VV¢),, =

Nonzero components of V(V x ) + (Vx )V :

[V(Vxh) + (Vx )V, = VIV <)+ (V<) V], = ‘pf —R (i +R
V(T %)+ (VxB¥],: = V) + (¥, = R ‘fq ~R:Fy.. (10)
cn” ’

The ray-theory approximations enable us to derive the early-time approximation ETA,
for elastodynamics. First, we obtain the displacement-potential relations by introducing
the first and third of (10) into the first of (1), which yields
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Next, we obtain the traction-potential relations by introducing the appropriate expressions
from (10) into (4) and observe that the boundary tractions 7,. r: and r. are the negatives of
0, 0,z and o, there ; this yields

n- .('”
&2 ~ .
’kﬂ(s(‘w,*'R;l(?q’/ R l//>
("n' on
L[
r;t—pq< V. +R. $~~R ¢> (12)
cn’ chn

Then we obtain the approximate wave equations in the local coordinate system by intro-
ducing the second and fourth of (10) into (2). which yields

¢

Cp~ ¢~ ? 2}\11).
cn” !

et xSV W RoR
cn” cn IR

: R.~R.

g T W R R (13)

cn” cn R-R:

The early-time relations (7). (11). (12) and (13) may be manipulated as described in
the appendix to obtain ETA, in local coordinates :

TX. )+ X)CT XD = pCii (X 1)+ (X) D' (X, 1), (14)
where ¢ = (1 pelo ) i = (u u-). and ¢’ and D’ are diagonal matrices with nonzero
elements ¢, ¢s. cgand 4.2, 2, re%peulvely Thus. (14) consists of three uncoupled equations.

Finally, we employ the rotation tensor Q(X) to transform from local to global Car-
tesian coordinates as

i (X.n) =0X)uX.r). t(X.0)=0X)iX.0. (15)

Introducing these into (14), and then multiplying the result through by 0'=0". we
obtain in global coordinates

_.ﬁ,i.ﬁ_.

ETA.: i(X.)+xX)CX)TX. 1) = pCXiuX.n) +ux(X)DX)u(X. ). (16)

where C(X) = 0" (X)C"0(X) and D(X) = 0" (X)D'0(X). In contrast to (14), (16) consists
of three coupled equations. Even so. ETA, is a spatially local approximation because all of
the quantities are evaluated at a single point.
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A lower-order ETA may be obtained from ETA, by noting that, at very early time,
the first terms on either side of (16) overshadow their lower-derivative counterparts. Thus,
neglecting the second terms on either side of (16) and integrating in time, we obtain in
global coordinates (Underwood and Geers, 1981)

ETA,: ©X.1) = pCX)u(X.n). (17)

Now, the preceding development makes no distinction between a body embedded in
an infinite medium and one fully or partially embedded in a semi-infinite medium. No
distinction is, in fact, necessary in the absence of early-time reflection of radiated/scattered
waves from the free surface of the semi-infinite medium back to the body. For a body
buried at depth comparable to a radius characterizing the body’s size, this requirement is
satisfied. However. in the case of a shallow-buried body, the medium between the structure
and the free surface should be included in the domain contained within the integral-
operator boundary, thereby creating a partially embedded radiator/scatterer. Then the only
breakdown in the ETA model occurs in the small region near the line of contact between
the body and the free surface, a region that is vanishingly small for vanishingly small time.

LATE-TIME APPROXIMATIONS LTA, AND LTA;

The approximation LTA, is obtained by simply expanding the Green's tensors of (6)
in Maclaurin series to get

TX.X.5) = T (X.X)+0(s).
UX.X'.s) = U (X X) 450" (X.X) 4+ O(s%). (18)

Whether for a whole-space or a half-space. 7'(X.X’) = 0. The Cartesian-coordinate
elements of U°(X, X"), U' (X, X’) and T°(X, X') for a whole-space are obtained by expanding
the Green'’s tensors of Cruse and Rizzo, 1968, which yields

70 K 3
Ul = R [3—4)d,+R,R ]
Ul = - 0220, 1200 = v ey
= / ([)+-(1 1)/(5‘]0[/
3u
, 2K i dR .
T = LU =200, F3R R, (1=20) (R, — R ) (19)

where K = 1/16m(1 —v) ; we recall that R = |X — X'| and n is positive going info the medium.
The tensors U°(X, X') and 7°(X.X’) are, of course. Kelvin's elastostatics results (see Kane,
1994). The corresponding elements for a half-space are obtained by expanding the Green's
tensors of Banerjee and Mamoon, 1990, which yields a long list of element formulae
provided in Lewis, 1994. The tensors U°(X.X') and 7°(X.X’) for the half-space are the
elastostatics results in Mindlin, 1936.

Introducing (18) into (6), retaining terms of order 5" and s', and inverse transforming,
we obtain

e S

LTA,: AX.XHtX.)+BX X)X, =X X)X, 0. (20)

in which the spatial operators A(X,X'), B(X.X’) and I'(X.X’) are defined by
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I

AX. X)X, 0

S

J FXL )T (XX dS. BRI = j 1% 00 (%.X) dS.
N s

r

il

=

XOa(X o) J (X" 1) Ea(x ~X)+T°(X, X')] ds’ 1)
p 2

where §(X —X") is the Dirac delta-function. We observe that these integral operators make
LTA, spatially nonlocal.

A lower-order LTA may be obtained from LTA, by noting that, for slow motions at
very late time, the second term on the left of (20) overshadows its higher-derivative
companion. Thus, neglecting the first term on the left side of (20), we obtain (Underwood
and Geers, 1981)

LTA,: BX. X)X, =TX X)aX".0. (22)

DOUBLY ASYMPTOTIC APPROXIMATIONS DAA, DAA. AND DAA,,

DAAs may be systematically obtained by a procedure called operaror matching, which
is akin to solution matching in the method of matched asymptotic approximations (Van
Dyke. 1964). A scalar form of the procedure was presented by Felippa, 1980b, extended to
operator form in Nicolas-Vullierme, 1991 and refined in Geers and Zhang, 1994. In the
following, the procedure for elastodynamic matching is described first for DAA,. then for
DAA., and finally for DAA, ».

To begin the procedure for DAA,, we Laplace-transform (17) and (22) to get

t(X.5) = B ' (X.XHT'(X". X)X, s). (23)
where B~ is the operator-inverse of B. Next, we choose the DAA, trial equation
t(X.s) = [sU, X.X)+ U, (X. X)X, 5). (24)

where the operators U, and U, are unknown, and then write it in the asymptotic forms

t(X.s) = [U, X.X)+0(s D)sia(X.s), s— x.

T(X.5) = [U, (X.X) +0(s)]i(X.5), s—0. (25)
Then we match the first of these to the first of (23) to obgainﬁz’l()a(, i) = Bfﬁ(f()g(i( —f(’)
and match the second to the second of (23) to obtain Uy(X.X") = B~ '(X, X"\ T (X", X").

Finally, we introduce these results for U, and U, into (24) and inverse-transform the
resulting equation to get (Underwood and Geers, 1981)

DAA,: (X.n =pCX)aX.n+B ' X.XHT'X". X)X 1. (26)

We now employ the matching procedure to obtain DAA,, omitting the spatial argu-
ments in order to simplify notation. First, we Laplace-transform (16) and (20) to get

[1+s5 'kCIE(s) = [pC+s ' purD]si(s),
(B+sAlt(s) = Tiics). 27

Then we choose the DAA, trial equation [c.f. (24)]
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[T+ To)T(s) = [s2Us +sU, + U, Jii(s). (28)

where the spatial operator 7 is defined by 7(X.X"){(X".s) = £(X.s). and then write it in the
asymptotic forms

[7+S’1?0]‘t;(s) =[Us+s'U, +0(s *)]si(s). s— .
[Ty +sHT(s) = [Us +35U, +0(sH)]iils), s—0, (29)

To match in the limit s — oc, we multiply the first of (27) through by 1 —s'%xC and
the first of (29) through by 7/—s~'T, to obtain

[+0(s )]tes) = (pC+s ' [uxD—prC? ]+ 0(s %) I sii(s),
+0(s )]Es) = {Us+5 ' [U, =T, U1+ O(s )} sii(s). (30)
Matching these through order s~ '. we find

U, = pC.

U, —T,U, = k[uD—pC?]. (31

To rgatc}g in the limit s — 0, we multiply the second of (27) and the second of (29) through
by [/—sB "A]lB~" and [I—sT,']T, . respectively, to get

[1+0H)]ts) = [1—sB 418 ' Tis).
[1+0(HNEs) = Ty LUy +3[U, = T; ' Uy ]+ O(s7) H(s). (32)

Matching these through order s, we obtain

T3 (1:'U,—U\1=B"4B"'T. (33)
Next, we solve (31) and (33), finding

T, = Q. U =B 'T-OB '4B'T.

U, =0B"'T. U, =pC. (34)

where @ = [B~'T'+x(pC> —uD)|[pC+B ' 4B~ 'T] '. Finally. we introduce these results
into (28) and inverse-transform to get

-

DAA,: i+0i=pCi+(B 'T—0B'4B 'Da+0B 'Tu (35)

A substantially simpler approximation. DAA, .. is obtained by taking A = 0, which
amounts to matching the trial equation (28) to LTA, instead of LTA, in the limit s — 0.
The second of (33) still applies, however. yielding T, ' U, — U, = 0. Thus, (35) reduces to

DAA, .: t+0i=pCi+B 'Ta+0B 'Ti. (36)
where Q= p'B 'T'C ' +x(C—2DC"). Finally. we observe that, because their tem-

poral operators are differential, DAAs are temporally local; however, because of the
integral operators associated with late-time approximation, they are spatially nonlocal.
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BOUNDARY ELEMENT DISCRETIZATION

Matrix forms of the early-time, late-time and doubly asymptotic approximations are
readily obtained by boundary-clement discretization (see Kane, 1994). With the boundary
displacement and traction fields approximated as

iX,n =v'Xyi(), X,n = v X)), (37)

where v(X) is an N x 3 matrix of interpolation functions, and ii(f) and t(f) are column
vectors of nodal displacement and traction responses, application of the method of weighted
residuals to (16) and (20) yields

ETA.: Ji+Kf = pCii+Mi,
LTA,: Ait+Bi= Gi. (38)

in which

J :J w(X)v'(X)dS, C :j w(X)C(X)v" (X) dS,

N S

K= J wX)X)CX)vT(X)dS. M = “J wX)x(X)D(X)vT (X) dS,

s S
A :J w(X)J vI(X) U (X. X)) dS ds.
S S

~

G- J w(x)J v X) Bo‘(i—i/)ﬁ“ (X.i’)}dS’ds,
S S

B = f w(X)J vI(X) 0" (X, X)) dS dS. (39)

S S

where w(X) is an N x 3 matrix of weighting functions. ETA, and LTA, are, of course, given
by (38) with K =M =0and A = 0.

Now a matrix DAA, may be obtained by multiplication of (26) through by B, followed
by direct boundary element discretization. A similar process cannot be used to obtain a
matrix DAA, or DAA, -, however, because of the undefined inverse operators that appear
in those approximations. Thus, the appropriate procedure by which to obtain matrix DAAs
is that of matrix matching, which is the discrete analog of operator matching, as used above.
Starting with the Laplace transforms of (38), we can apply matrix matching to obtain [c.f.

(35)]
DAA,: i+Qt=pJ 'Cii+(B 'G—OB 'AB 'G)a+QB 'Gi. (40)

where Q = [B™'G+J "(pKJ 'C—M)][pJ 'C+B'AB"!G]~'. The simpler approxi-
mation DAA, ,is generated by taking A = 0. The even simpler DAA, is produced by taking
Q=0.

CANONICAL PROBLEM

To provide some initial insight into the nature and accuracy of doubly asymptotic
approximations for transient elastodynamics, we consider the simple problem of a spherical
cavity with radius R in an infinite elastic domain loaded by a uniform, radial step-traction
(pressure loading). For this problem, ¢(X. 1) = ¢(r.1) and ¥(X.1) = 0. so the first of (1),
the first of (2), and (4) become
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o 7<:~2¢ 2a¢) &2 L& 2i0¢
+°50) = =,

u=Ccejicr,
' o2 ror

(41)

or ort o FCr

Laplace transformation of the second of these vields an equation that possesses the following
radiation-type solution :

$(r.5) = fls)ka (2). (42)
where ky(z) = =~ 'e 7 is the modified spherical Bessel function of order zero and z = rs/c,
(Abramowitz and Stegun, 1964).

We can easily obtain the exact temporal impedance relation for this problem as follows.
First, we eliminate the radial derivatives in the last of (41) by utilizing the first of and
second of (41), which vields

A2 4
a(r.t)y =p 27(1)(1', 1) — ’—“ u(r,t). (43)
(

=

Then we take the Laplace transform of this equation, introduce (42), and let
z =27 = Rs/cp to get

SRS = | o ko(Z)  Au
G(R.s) = pcl,sk;)(z)w R

}Z(R.s). (44)

where kj is the derivative of k, with respect to argument. Now it is readily found that
ko (D) iky(Z) = —1/(1+2Z ") also, the radial displacement and traction at the surface of
the cavity are U(r) = u(R,1) and P(r) = —a(R.1t), respectively. Thus, introducing the
Laplace transforms of these relations into (44), multiplying through by —s(1+Z~"), and
inverse transforming, we obtain at the cavity surface the exact TIR

LoC .o 4w duc
P+ ﬁP = pep U+ 5 U+ RVZD u. (45)

At very early time, when the highest derivatives on either side dominate, this equation
yields the plane-wave relation P = p¢), U': at late time, when the lowest derivatives dominate,
it yields the quasi-static relation P = (4u/R) U.

We can also obtain doubly asymptotic approximations. First, ETA,is found as follows.
We introduce P(1) = —o(R. 1) and ko (Z)/ky(Z) = —1/(1+Z" ") into (44), and multiply
the result through by — (1+2Z") to get

. 4 . -
(145" "cp/R)P(s) = [p(‘,)—}— %(s Py ‘c,,_/R)}sU(R, s). (46)

Then we retain only the first two terms in the bracket on the right, multiply the result
through by s, and inverse-transform to obtain ETA, [cf. (16)]

. T
P+ ﬁ P=pep U+ 5 U 47

We see that this produces ETA, at very early time.

Next. we find LTA. by expanding k,(Z)/ky(Z) = —Z/(1+Z) for small Z as
ko (Z)jky(Z) = —Z(1—Z+Z>—---). and introducing this, U(s) = #(R,s) and
P(s) = —6(R.s) into (44) to get
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P(s) = Fg +0(s° ):|(:7(s). (48)

Then we drop the higher-order terms on the right and inverse-transform to obtain LTA,

4
=—U. 49
P=—U (49)

Comparing this with (20), we see that 4 = 0 for this problem.
Finally, we use scalar matching, the scalar analog of the operator matching, to deter-
mine DAA,. Following the procedure used to obtain (35), we find

dp
R U, (50)

. L odu
P+QP = pep U+ £U+Q

where Q = ¢,/R. As this is equivalent to (45), we conclude that DAA, 1s exact for this
problem. Also. because LTA, is the same as LTA, (A =0), DAA, » is also exact for this
problem.

For P(1) = P,H(r), where H(r) is the Heaviside step-function, (45) and (50) yield the
Exact/DAA,/DAA, - solution

PR I B
U = " (Il —e™ " cos Qu 1)+ ;,u);,QO e o’ sinQyt |, (5h

L

where @y = 2¢/cp. S0 = csjcp, Qo = 2(1=C3) ' Peg/ep and f = ¢, t/R. A more complicated
form of this solution appears in Timoshenko and Goodier, 1970. In contrast, (50) with
Q = 0 gives the DAA, solution

P,R
Uty = ——(1—e~""), (52)
4p
(47) gives the ETA, solution
. POR P — @D} s
ur) = 4 (1= *) (1 —e™™") +1], (53)
u
and (49) gives the LTA, solution
P,R .
Uty = == H(i). (54)
4u

Numerical results produced by (51)-(54) for v =1/3, which produces
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15 . | . |
1} N i -

05 // |
——— Exact/DAA2/DAA1-2
T DAA1

-------- ETA2
LTA2
0 . ‘ J |
. . N 6 8 10

Fig. 2. Radial displacement of a step-pressurized spherical cavity in an infinite, isotropic. elastic
medium : exact;DAA,/DAA, ;, DAA,. ETA. and LTA, solutions.

csiep = [(1—=2v)/2(1 —v)]'? = 1/2. are shown in Fig. 2. ETA,, which yields the same result
that ETA, does for ¢s/c, = 1/2, succeeds at early time but fails at late time. LTA,, which
is the same as LTA, for this problem, fails at early time but succeeds at late time. DAA,
succeeds at both early and late times, but misses the overshoot at intermediate time. More
comprehensive DAA evaluations appear in Geers ef al., 1997a and 1997b; they disclose
excellent DAA, and DAA, , performance.

CONCLUSION

First- and second-order, singly and doubly asymptotic approximations have been
formulated for the transient response analysis of a body embedded in an infinite or semi-
infinite, uniform, isotropic, elastic medium. Only DAA, . and DAA, appear sufficiently
robust to handle problems involving broad-band excitations. Higher-order DAAs are
currently being formulated for computational acoustics. A complicating factor in these
extensions is the appearance of tangential field derivatives in ETA; (Geers, 1991).
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APPENDIX: DERIVATION OF ETA,

We work in this appendix with the Laplace transforms of (7) and (11)—(13), omitting repetitive statements
regarding Laplace transformation. We also simplify notation by using a prime to denote a partial derivative with
respect to the normal ».

Observing in (7) and (11)-(13) that the equations involving the scalar potential ¢ are uncoupled from those
involving the vector potential ¥. we first derive ETA, for dilatational waves. Employing the first of (13) to
eliminate ¢” in the first of (12). and subsequently using (7) with ¢ = ¢ to eliminate @ itself, we get

i, =lps" (K+scp) ! +4ux] . (A1)

Then we utilize the first of (11) 1o eliminate ¢ and multiply the resulting equation through by s+ xc,, we obtain

(s Kep), = (peps +durs +dux™ ep)i,. (A2)

Finally. because ETA, requires only two terms on the left and two terms on the right. we drop the third term on
the right side of (A2) and inverse-transform to arrive at the first of (14). R

The derivation of ETA, for shear waves is more complicated. First, we use (7) with ¢ = ¥ 10 eliminate /-
and ¢’ in the last two of (12), which yields

.= pcip— R "k + R 4xie0y].

fo= —pil— R (kR el (A3)
Second. we similarly eliminate ¥ and " in the last two of {13) to get

Ul = [(ses) + 2Kk sieg) — 21;]‘&:-

W= [(s705)” +2K(Kk~ 8 ¢g) — 2T ). (A4)
wheret. = R, '(R.'—R.");2and t. = R. "(R.' —R:'")/2. Third. we eliminate the second derivatives in (A3)
by introducing (A4) into them. which vields

fo=pcilts )+ Qv — R (sre) + 207 — 1) = R Wk + R

o= —peslsfes)? + Q=R (5. e) 4203 —1)— R (k+ R, D] (AS)

Fourth, we use the Laplace transform of (7) with ¢ = ¥ to eliminate /. and ¥ in the last two of (11), thereby
finding

i

2= (k=R =yl

go= = (k=R s (A6)

Fifth. we eliminate ¢, and . from (A5) by employing (A6). which gives
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(v R [ sie )T — pe (s/e)? +(2n— R, YR §) 2(;\'1 —1.)— R’ k (k+ R- ! )]I]g.
(k=R +sico)l- = pii[(sics)® + 2k —R. ) (sieg) 2087 — 1) — RV (k+ R, D] (A7)

The coefficients in (A7) are readily simplified. Recalling thatx =(R. ' +R. '), 7. = R, ' (R, ' =R ")/2and
1. =R:'(R7'—R. ")/2. and defining  =(R:' —R. '):2, we find

K—R. ' =f. 2k—R.'=R:'. UK —1)- R (k+R)y =R
Kk—R.'=—f 2k—R.'"=R:' 25—t )—R."(k+R.")=—BR". (A8)
Thus. (A7) become
(54 Pes)ic = pes(s5+ R egs+ R, A,
(s—Pes)i- = peg(s* +R. Tegs — R i (A9)

Sixth, we multiply the first of these through by (s+xrcy)i(s+ fey) and the second through by (s+rcg)/(s—fey)
to get

(s +Keg) . = peg(s™ = 2rees + O]
(s+re)T = pegls™ +2kegs+0(s")])a-. (A10)

Finally. we drop the O(s") terms in these equations and inverse-transform to arrive at the last two of (14).



